没有铂金,我们还会有智能手机吗?
2020-12-16 07:18:24 4276次浏览
人类从公元前3500年左右就开始制作玻璃。在古代文明中,玻璃被用来制作武器和装饰品。
从那以后,玻璃制作工艺开展成为我们今天所知的拥有多种玻璃类型和终端用处的高科技产业。目前,来自玻 璃职业的铂金需求量约占年度铂金工业总需求量的11%。
铂金的重要用处
尽管一切玻璃的制作进程都会涉及在高达1700°C的高温下熔化原资料,但是玻璃准确的成份却能够依据使用的不同而变化。
由于铂金具有高达1768°C的熔点和明显的抗高温腐蚀性,使其成为是少量几种能承受这种高温熔融进程的资料的之一。
因此,铂金被用在容器的内部来包括、连接和形成熔融玻璃。它也被用来涂在诸如陶瓷搅拌器和碗这些用具上,与熔融玻璃混合以保证所制作的用具成分的一致性。
更重要的是,铂金是一种稳定的或者说是“有惰性”的金属。这意味着它很少可能与其他物质发生化学反应。在高质量的玻璃生产中,这一特性至关重要,由于它能够避免在生产进程中的交叉污染,然后削减产品的杂质和缺陷。这对光学玻璃和液晶显示屏(LCD)等产品尤其重要,这些产品被用于智能手机、电脑和平板电视等电子产品中。
铂金有助于进步玻璃制作业的效率和本钱效益。它不会在生产进程中被消耗,并且能够被屡次重复使用。此外,铂金还有助于延伸设备的使用寿命,削减停机维护的时刻,降低生产商的动力总需求。
作为增加驱动力的可继续性
玻璃正越来越多的为轿车、修建和可再生动力领域供给可继续的解决方案,以削减气候变化的影响。
例如,玻璃纤维资料在轿车职业中的使用正不断增加。这种坚固而轻型的资料被用于减轻车身的重量,帮助轿车制作商完成节能并在全球范围内到达更严厉排放标准的方针。
玻璃纤维也被用于修建隔热资料来削减热量的流失。而可再生动力领域则依托高质量的玻璃组件来制作光电(太阳能)板以及用高质量的玻璃纤维来制作风力涡轮机。
曩昔5年以来,玻璃职业的铂金需求量均匀每年约为20万盎司。基于可再生动力的开展趋势,预计玻璃制作业的产能将会增加,然后推动铂金需求的增加。
铂金是玻璃制作及其他职业一种需求旺盛的工业大宗商品,其使用范围还在继续扩展。一起,铂金也正日益被视为一种有效的出资财物,在私家出资组合或养老金方案中为出资者供给了清楚明了的多样化收益。
-
在我们数十年的电镀历史中,我们对镀金工艺和去除镀层的工艺有广泛的了解。根据应用和生产年份的不同,电镀厚度的范围从几微英寸的金到几百英寸不等。大多数公司在购买镀金图钉时没有考虑这些因素,但是在确定真实价值时这些因素至关重要。在我们的工厂中,我
-
微观结构:铟靶晶粒尺寸一般需维持在 10-50 微米区间,密度高于 7.31g/cm³,热导率保持在 81.8W/(m・K) 以上,这些技术参数直接决定了其在真空溅射过程中的沉积效率和薄膜质量。热等静压(HIP)工艺:在高温和高压环境下进行
-
光伏产业:占比 15%,应用于薄膜太阳能电池的透明电极,如铜铟镓硒(CIGS)薄膜电池、光伏异质结电池(HJT)等,随着这些电池技术的产业化进程加速,对铟靶的需求也在不断增加。显示技术领域:广泛应用于 LCD、OLED、AMOLED 等平板
-
超高密度成型:超高密度成型工艺(≥99.5%)可使靶材具有更好的性能,提高在真空溅射过程中的稳定性和使用寿命。晶粒定向控制:晶粒定向控制技术能够控制铟靶的晶粒尺寸和方向,提升溅射薄膜的质量和性能,满足高端应用领域的需求。良好的机械和热学特性
-
良好的机械和热学特性:硬度较高,在研磨、抛光过程中不易被划伤,保证了薄膜表面的平整性;同时能够承受较高的温度而不发生分解或结构破坏,在高温环境中的抗裂性和耐用性良好,确保了薄膜在溅射和高温条件下的稳定性。粉末冶金法:将铟氧化物和锡氧化物粉末
-
半导体领域:占比 28%,用于晶圆制造的金属互联层与钝化层沉积,在第三代半导体器件制造中的渗透率持续攀升,如氮化镓功率器件就需要使用铟靶。超高密度成型:超高密度成型工艺(≥99.5%)可使靶材具有更好的性能,提高在真空溅射过程中的稳定性和使
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。显示面板制造:是铟靶的应用领域,约占总需求的 52%,主
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。热等静压(HIP)工艺:在高温和高压环境下进行烧结,能够
-
半导体领域:占比 28%,用于晶圆制造的金属互联层与钝化层沉积,在第三代半导体器件制造中的渗透率持续攀升,如氮化镓功率器件就需要使用铟靶。粉末冶金法:将铟氧化物和锡氧化物粉末均匀混合,随后进行预烧结,以获得初步的靶材结构。预烧结步骤通常在相
-
良好的导电性:ITO 薄膜的电阻率可达 10⁻⁴Ω・cm,具有较低的电阻和较高的载流子浓度,能够有效地传输电流,满足各种电子设备的导电需求。光伏技术领域:在太阳能电池中,ITO 薄膜作为前电极材料,具有高透明性,能够保证光线有效进入吸收层,
-
粉末冶金法:将铟氧化物和锡氧化物粉末均匀混合,随后进行预烧结,以获得初步的靶材结构。预烧结步骤通常在相对低温下进行,目的是通过部分熔融促进粉末颗粒的结合,同时防止过早的晶粒长大。粉体粒径分布的控制是该方法中的关键一环。精铟是指纯度极高的金属
-
微观结构:铟靶晶粒尺寸一般需维持在 10-50 微米区间,密度高于 7.31g/cm³,热导率保持在 81.8W/(m・K) 以上,这些技术参数直接决定了其在真空溅射过程中的沉积效率和薄膜质量。精铟的制备需经过多步精炼,核心工艺包括:原料预
-
优异的光学性能:在可见光波段(380-780nm)内,ITO 薄膜的透光率通常能够达到 80% 以上,高透光率确保了其在显示器、太阳能电池等应用中的良好表现。光伏技术领域:在太阳能电池中,ITO 薄膜作为前电极材料,具有高透明性,能够保证光
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。优异的光学性能:在可见光波段(380-780nm)内,I
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。半导体领域:占比 28%,用于晶圆制造的金属互联层与钝化
-
良好的机械和热学特性:硬度较高,在研磨、抛光过程中不易被划伤,保证了薄膜表面的平整性;同时能够承受较高的温度而不发生分解或结构破坏,在高温环境中的抗裂性和耐用性良好,确保了薄膜在溅射和高温条件下的稳定性。显示技术领域:广泛应用于 LCD、O
-
主要成分:通常由 90% 的氧化铟(In₂O₃)和 10% 的氧化锡(SnO₂)组成,这一比例在实际应用中能实现透明性和导电性的理想平衡。外观特性:在靶材形态下,颜色通常为浅黄色至浅绿色,而制成薄膜后则具有透明性。良好的机械和热学特性:硬度
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。主要成分:通常由 90% 的氧化铟(In₂O₃)和 10
-
优异的光学性能:在可见光波段(380-780nm)内,ITO 薄膜的透光率通常能够达到 80% 以上,高透光率确保了其在显示器、太阳能电池等应用中的良好表现。光伏技术领域:在太阳能电池中,ITO 薄膜作为前电极材料,具有高透明性,能够保证光
-
微观结构:铟靶晶粒尺寸一般需维持在 10-50 微米区间,密度高于 7.31g/cm³,热导率保持在 81.8W/(m・K) 以上,这些技术参数直接决定了其在真空溅射过程中的沉积效率和薄膜质量。良好的机械和热学特性:硬度较高,在研磨、抛光过