重庆涪陵区回收银盐,获得客户高度评价
2025-11-04 04:54:01 875次浏览
价 格:面议
锡铅合金焊料广泛应用于电子信息产品的制造。在焊接过程中,由于高温氧化而产生大量的氧化渣。氧化渣的主要成分是锡铅氧化物,属于含铅有害固体废物。它的无序排放对人类和环境危害极大,是国家管理的危险固体废物的一类。
废焊渣的处理一般采用直接加热分离法。这种方法不仅回收率低,而且由于直接进入大气层的“铅烟”而受到环境的双重污染,已被禁止。在本文中,液体覆盖还原技术,不仅有效地抑制了“铅烟”的挥发,也会导致锡和铅的氧化物还原,使废焊渣的回收率可达90%以上,既保护了环境,又提高了资源的利用效率,并效果理想。
尽管贵金属二次资源的种类很多、含量差异很大,要找到1种统一的无害化处置模式是不可能的,但遵循一定的规律,可以减少回收利用过程中的二次污染,向着无害化的境界前进。
(1)回收利用工艺的性。在制定贵金属二次资源回收利用方案时,除了考虑贵金属的回收率以外,将回收利用过程中的二次废气、废液和废渣的治理问题放在与贵金属的回收利用率同等重要的地位。如果某一回收方案不能解决二次污染问题,则必须放弃该回收工艺。
(2)以废治废。用其它废弃物作为处置贵金属二次资源的原料,达到以废治废的目的,是贵金属废料无害化处置的较好方法。例如,用其它行业产生的酸性、碱性废水作为贵金属废料处置过程中的酸碱,以电镀废水作为贵金属废料处置过程中的含氰溶液等都能够达到以废治废的目的。对于含贵金属较高的固体废料,可以作为冶炼厂冶炼过程的添加物料,尽量减少单独处置贵金属二次资源的数量。
对各种化学腐蚀碱液中锗的回收工艺,通过工艺实验或生产过程的测算,综合技术经济指标均与预期目标存在较大差距。为了经济地回收化学腐蚀碱液中的有价金属,后选取氯化镁作为沉淀剂,进行了回收锗的工艺实验研究。
腐蚀碱液中的锗是以可溶性的偏锗酸钠形式存在,氯化镁加入溶液过程中,随着溶液pH值的变化,生成的水合二氧化锗、溶解度极低的锗酸镁与大量生成的氢氧化镁协同沉淀,使碱液中的锗富集到沉淀物中。经过固液分离,弃去滤液,对滤渣直接氯化蒸馏,生成纯度很高的四氯化锗,返回生产系统当中,达到从腐蚀碱液中回收锗的目的。
根据实验优选工艺参数和基本流程,进行了生产装置的放大实验。实验是在常温和搅拌的条件下进行的,完全可以利用现有的聚合铁沉淀处理装置。沉淀反应器采用带减速电机的塑料搅拌槽,过滤装置采用工业滤布带筛板过滤槽,氯化蒸馏装置由搪瓷反应釜和冷凝吸收系统组成。通过试运行考核,生产装置的放大实验取得了同样良好的技术经济指标。
银金电解废液中铂和钯的回收
②从金电解废液中回收铂和钯。在金的电解精炼过程中,由于铂、钯电位比金负,所以铂、钯从阳极溶解后进入电解液中,生成氯铂酸和氯亚钯酸。当电解液使用到一定周期后,铂钯的浓度逐渐上升,当铂的含量超过50g/L~60g/L,钯超过15g/L时,便有可能在阴极上和金一起析出的危险。因此电解液必须进行处理,回收其中的铂钯,由于电解液中含金高达250g/L~300g/L,所以在提取铂钯前,必须先还原脱金。将还原金后的溶液,在搅拌下加入固体工业氯化铵,使铂生成(NH4)2PtCl6沉淀与钯分离。(NH4)2PtCl6用含5%HCl和15%NH4Cl洗涤后,放入马弗炉中煅烧成粗铂(含Pt95%),进一步精炼得纯铂。将氯化铵沉淀铂后的溶液,用金属锌块置换钯,至溶液呈浅绿色时为置换终点(或用SnCl2还原),过滤后得钯精矿。钯精矿用热水洗涤至无结晶,拣出残留锌屑,将滤液和洗液弃之。
-
正规贵金属交易中心指出,由于前期国务院发布的38号文整顿交 易市场,随后央行等五部委联合发文,严格禁止除了上海黄金交易所和上海期货交易所以外任何机构和个人设立黄金交易所,或黄金交易平台。 根据相关文件,2011年国务院发布38号文《国务院关
-
微观结构:铟靶晶粒尺寸一般需维持在 10-50 微米区间,密度高于 7.31g/cm³,热导率保持在 81.8W/(m・K) 以上,这些技术参数直接决定了其在真空溅射过程中的沉积效率和薄膜质量。热等静压(HIP)工艺:在高温和高压环境下进行
-
光伏产业:占比 15%,应用于薄膜太阳能电池的透明电极,如铜铟镓硒(CIGS)薄膜电池、光伏异质结电池(HJT)等,随着这些电池技术的产业化进程加速,对铟靶的需求也在不断增加。显示技术领域:广泛应用于 LCD、OLED、AMOLED 等平板
-
超高密度成型:超高密度成型工艺(≥99.5%)可使靶材具有更好的性能,提高在真空溅射过程中的稳定性和使用寿命。晶粒定向控制:晶粒定向控制技术能够控制铟靶的晶粒尺寸和方向,提升溅射薄膜的质量和性能,满足高端应用领域的需求。良好的机械和热学特性
-
良好的机械和热学特性:硬度较高,在研磨、抛光过程中不易被划伤,保证了薄膜表面的平整性;同时能够承受较高的温度而不发生分解或结构破坏,在高温环境中的抗裂性和耐用性良好,确保了薄膜在溅射和高温条件下的稳定性。粉末冶金法:将铟氧化物和锡氧化物粉末
-
半导体领域:占比 28%,用于晶圆制造的金属互联层与钝化层沉积,在第三代半导体器件制造中的渗透率持续攀升,如氮化镓功率器件就需要使用铟靶。超高密度成型:超高密度成型工艺(≥99.5%)可使靶材具有更好的性能,提高在真空溅射过程中的稳定性和使
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。显示面板制造:是铟靶的应用领域,约占总需求的 52%,主
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。热等静压(HIP)工艺:在高温和高压环境下进行烧结,能够
-
半导体领域:占比 28%,用于晶圆制造的金属互联层与钝化层沉积,在第三代半导体器件制造中的渗透率持续攀升,如氮化镓功率器件就需要使用铟靶。粉末冶金法:将铟氧化物和锡氧化物粉末均匀混合,随后进行预烧结,以获得初步的靶材结构。预烧结步骤通常在相
-
良好的导电性:ITO 薄膜的电阻率可达 10⁻⁴Ω・cm,具有较低的电阻和较高的载流子浓度,能够有效地传输电流,满足各种电子设备的导电需求。光伏技术领域:在太阳能电池中,ITO 薄膜作为前电极材料,具有高透明性,能够保证光线有效进入吸收层,
-
粉末冶金法:将铟氧化物和锡氧化物粉末均匀混合,随后进行预烧结,以获得初步的靶材结构。预烧结步骤通常在相对低温下进行,目的是通过部分熔融促进粉末颗粒的结合,同时防止过早的晶粒长大。粉体粒径分布的控制是该方法中的关键一环。精铟是指纯度极高的金属
-
微观结构:铟靶晶粒尺寸一般需维持在 10-50 微米区间,密度高于 7.31g/cm³,热导率保持在 81.8W/(m・K) 以上,这些技术参数直接决定了其在真空溅射过程中的沉积效率和薄膜质量。精铟的制备需经过多步精炼,核心工艺包括:原料预
-
优异的光学性能:在可见光波段(380-780nm)内,ITO 薄膜的透光率通常能够达到 80% 以上,高透光率确保了其在显示器、太阳能电池等应用中的良好表现。光伏技术领域:在太阳能电池中,ITO 薄膜作为前电极材料,具有高透明性,能够保证光
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。优异的光学性能:在可见光波段(380-780nm)内,I
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。半导体领域:占比 28%,用于晶圆制造的金属互联层与钝化
-
良好的机械和热学特性:硬度较高,在研磨、抛光过程中不易被划伤,保证了薄膜表面的平整性;同时能够承受较高的温度而不发生分解或结构破坏,在高温环境中的抗裂性和耐用性良好,确保了薄膜在溅射和高温条件下的稳定性。显示技术领域:广泛应用于 LCD、O
-
主要成分:通常由 90% 的氧化铟(In₂O₃)和 10% 的氧化锡(SnO₂)组成,这一比例在实际应用中能实现透明性和导电性的理想平衡。外观特性:在靶材形态下,颜色通常为浅黄色至浅绿色,而制成薄膜后则具有透明性。良好的机械和热学特性:硬度
-
铟靶是指以铟为主要成分的溅射靶材,是一种在材料表面镀膜过程中用于提供铟源的材料。在真空溅射镀膜工艺中,铟靶材在高能粒子的轰击下,铟原子被溅射出来并沉积在基底材料表面,形成所需的铟薄膜。主要成分:通常由 90% 的氧化铟(In₂O₃)和 10
-
优异的光学性能:在可见光波段(380-780nm)内,ITO 薄膜的透光率通常能够达到 80% 以上,高透光率确保了其在显示器、太阳能电池等应用中的良好表现。光伏技术领域:在太阳能电池中,ITO 薄膜作为前电极材料,具有高透明性,能够保证光
-
微观结构:铟靶晶粒尺寸一般需维持在 10-50 微米区间,密度高于 7.31g/cm³,热导率保持在 81.8W/(m・K) 以上,这些技术参数直接决定了其在真空溅射过程中的沉积效率和薄膜质量。良好的机械和热学特性:硬度较高,在研磨、抛光过